Ist Semestral examination M.Math. Ist year Subject - Number Theory : Instructor - B.Sury December 4, 2003

All questions carry equal marks.

Q 1.

Decide whether the following equations have solutions in integers x, y, N:

$$x^{2} + 5x - 12 = 31N$$
$$y^{2} + 6y + 7 = 317N$$

Q 2.

(a) Let $\zeta(s) \sum_{n \ge 1} \frac{a_n}{n^s} = \zeta(s-1)$ where all these Dirichlet series absolutely converge for $\operatorname{Re} s > t$ for some finite t. Compute a_p for any prime p. (b) Let $\zeta(s) \sum_{n \ge 1} \frac{b_n}{n^s} = 1$ where both these Dirichlet series absolutely converge for $\operatorname{Re} s > t$ for some finite t. Compute b_{n^2} for any n > 1.

OR

Let n be fixed and p be a fixed prime p not dividing n. If f(p) is the order of p in the group $(\mathbf{Z}/n\mathbf{Z})^*$, and w is any f(p)-th root of unity, prove that there are exactly $\phi(n)/f(p)$ characters χ of $(\mathbf{Z}/n\mathbf{Z})^*$ for which $\chi(p) = w$. Hence, conclude that

$$\prod_{\chi} (1 - \chi(p)T) = (1 - T^{f(p)})^{\phi(n)/f(p)}$$

where χ runs over all the characters of $(\mathbf{Z}/n\mathbf{Z})^*$.

Q 3.

Define $\mathbf{Q}_p, \mathbf{Z}_p$ and prove that each $a \in \mathbf{Z}_p$ has a unique series expansion of the form $\sum_{n>0} a_n p^n$ where $0 \le a_n < p$.

\mathbf{OR}

Prove that a unit $a = \sum_{n\geq 0} a_n p^n \in \mathbf{Z}_p^*$ is a square if, and only if, a_0 is a nonzero square modulo p.

Q 4.

Use the Chevalley-Warning theorem to prove that each element of a finite field is a sum of two squares in it.

OR

Let F be a finite field of cardinality q and let $v: F \to \mathbb{Z}$ be the map defined by v(0) = q - 1 and v(a) = -1 for $a \neq 0$. If $b \in F$, prove for each m that

$$\sum_{c_1+\dots+c_m=b} v(c_1)\dots v(c_m) = v(b)q^{m-1}.$$

Q 5.

Prove that each z in the upper half-plane can be transformed to a point w in it such that $|Re w| \leq 1/2$ and $|w| \geq 1$ by an element of $PSL(2, \mathbb{Z})$.

OR

For each even integer $k \geq 4$, assuming that

$$G_k(z) := \sum_{(m,n) \neq (0,0)} \frac{1}{(mz+n)^k}$$

is absolutely convergent and uniformly convergent on compact subsets of the upper half-plane, prove that $G_k(z)$ is a modular form of weight k which is not a cusp form.

Q 6.

For each natural number n, if T(n) denotes the corresponding Hecke operator and L is a lattice in **C**, define T(n)L. Prove that

$$T(p^{n})T(p)L = T(p^{n+1})L + pT(p^{n-1})(pL)$$

for any prime p and any $n \ge 1$.

OR

If $f \in M_{2k}$ is a nonzero cusp form which is a common eigenfunction for all the operators T(n), prove that the coefficient a_1 in the q-expansion $\sum_{n\geq 1} a_n q^n$ of f, is nonzero.